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Abstract—For outdoor navigation, we use unique and pub-
licly available Google maps. For indoor navigation, we use
separate maps which are not available everywhere. A challenging
problem in indoor navigation is to find a method to automatically
select the appropriate map in a multi-floor building. In this
paper, we present a map selection model and assisted algorithms,
which uses GPS (satellite number and user location) to detect
indoor/outdoor transition and barometer to determine which
floor we are at currently. Several scenarios are designed to collect
raw data and analyze the character on different floors of the
Atwater Kent Laboratory at Worcester Polytechnic Institute. A
general solution with optimized parameters is made from the
aspect of false alarm and time delay.

I. INTRODUCTION

In the highly-developing society, smart phones with accu-
rate and reliable Global Positioning System (GPS) can easily
leads you to the right place. However, outdoor navigation
alone cannot meets people’s needs to reach certain places,
especially when the destinations are located at some com-
plicated indoor environments such as schools or hospitals,
where the ubiquitous GPS is challenged.[1][2][3][4][5] To
implement indoor navigation[6], not only new equipment and
technologies should be used, but outdoor maps should be
replaced with indoor maps. Moreover, maps of different floors
in multi-floor buildings differ from each other, which makes
it more complex to choose a proper map. Then here comes
the map selection problem: if one is going from outdoors to
indoors, or going between different floors inside a building,
how can the maps be selected automatically to serve the
accurate and in-time navigation?

This map selection problem can be divided into two parts:
outdoor-indoor transition and multi-floor transition. For the
first part, decision should be made to determine whether the
user is indoor or outdoor (can be viewed as intruder detection
problem)and the corresponding map should be selected as soon
as the current condition changes. For the second part, detection
should be made to determine which floor is the user located
at a specific time and the map should be selected to represent
the correct floor. Although the map selection problem seems
straightforward, there still exists some difficulties in making
the decision accurate and in-time:

• Different buildings have different geometry (doors, cor-
ridors, and windows) and equipment (stair and elevator),
which makes it extremely complex to detect transition.

• Smart phones have various sensors, and we should decide
what sensors can be used to solve the problem and
whether they can be fused for better performance.
In this paper, we present a standard method which can

be used to solve automated map selection problem, for either
intruder or floor detection. We also design several algorithms
according to the data gathered from the sensors, compare their
performance, and give an general solution. We aim to develop
a simple and state-of-the-art approach which can be used into
smart phone application in the future.

In the following section, we will review some related
works. Section III describes the methodology as well as an
overview of the algorithmic components of the map selection
system based on the GPS radio and barometer. Test bed, sce-
narios and results are outlined in Section IV while conclusion
is made in Section V.

II. RELATED WORKS

Since smart phone is powerful with various embedded
sensors (Barometer, Gyroscope, etc.) and other applications
(WiFi, GPS), approach for intruder detection can be imple-
mented in multiple methods. Some related work has been done
related to this topic.

The work described by [7] presents an approach which
detects intruder for WLAN access. Least Mean Square (LMS)
and Prioritized Maximum Power (PMP) are used as two RSS-
based matching algorithms. Their performance of accuracy are
compared in indoor and outdoor-indoor areas and PMP algo-
rithm provides a better performance than LMS in positioning
application.

An approach using fusion of sensors, WLAN signals
and building information for indoor/campus localization is
developed by [8]. This method shows the possibilities of
combing the measurements from different sensors and building
information to obtain accurate indoor localization as well as
the possibilities that sensors can aid in intruder detection[9].

Some indoor personal navigation applications are intro-
duced in [6]. Map Matching Algorithms are implemented,
which make the Pedestrian Navigation Module (PNM) have
the capbility to provide localization results even with bad
reception of GPS signals.

Another approach is described in [7] which fuse dead
reckoning (DR) algorithm, GPS, and RFID for pedestrian
positioning. This method is implemented as software module



Fig. 1. State Machine

with web-based APIs on computing systems which shows
that GPS and the active RFID tag system can seamlessly
and effectively adjust estimation errors in DR as well as
possibilities for sensor fusion localization.

III. METHODOLOGY

A. State Machine Model

Since the map is selected according to the current state
(indoor/outdoor or different floors), a state machine model
satisfies the problem perfectly. We design a state machine with
five states: outdoor and indoor (ground floor, 1st floor, 2nd
floor and 3rd floor). Now that the five states are determined, we
should find suitable sensors from which data can be provided
to predict the transition between different states. Commonly,
modern smart phones are integrated with various sensors, such
as embedded GPS radio, accelerometer, gyroscope, barometer,
and etc. We tested all the sensors in outdoor, indoor and multi-
floor scenarios and found GPS radio the best to determine in-
door/outdoor transition while barometer the best to determine
multi-floor transition.

Detection of indoor/outdoor transition will be made ac-
cording to the availability of GPS radio. It’s well recognized
that GPS provides great accuracy in outdoor localization. But
the signal is lost in most indoor environments which are hostile
to GPS radio. So we can roughly determine the user is outdoor
when GPS is acquired and indoor when GPS is denied. But the
detection is not accurate enough in all cases, so some methods
are discussed to improve the performance in the next section.

As for detection of floor transition, we exploit the prop-
erties of barometric pressure since it is tightly related to the
altitude of each floor (can be calculated by using certain
equations). When the user is going upstairs or downstairs, he
can choose either walking the staircase or taking the elevator.
These two methods show different characters in the barometric
pressure readings, so we should treat them differently. More
exploration will be presented in the pressure-height model.

With all the five states and triggering conditions for
transition, the entire state machine is depicted in Figure 1.

B. Detecting Outdoor-indoor Transition

As is mentioned above, GPS radio is considered the best
for detecting outdoor-indoor transition. From the embedded
GPS radio, we can get both the Line-Of-Sight (LOS) satellite
number and the estimated location at a certain moment. From
these two types of data, we can design algorithms to realize
transition detection.

The first arithmetical design is based on the availability
of the GPS radio. State is recognized as outdoor if GPS is
acquired while indoor if GPS is denied. To get a precise
location estimation, more than 4 LOS satellites should be
available. So at the beginning of the algorithm, we should
make sure that more than 4 LOS satellites is acquired. If not,
the algorithm will not work until the LOS satellite number
meets the requirement. To detect the transition, we should
also consider the building geometry. Since entrances of a
building are the access between outdoor and indoor world,
we should pay special attention to the data gathered around



Fig. 2. Basic structure of the algorithm

the door. Consequently, the location should be around the
entrance before we make a transition detection and we will
ignore all the changes of the GPS status when we are far
from the entrance.

The basic structure of the algorithm is shown as Figure
2. It starts by receiving the GPS signal from the phone, and
compares the received LOS satellites number with 4. If the
LOS satellite number is more than 4(including 4), we have
enough number of signals to estimate our current location
and calculate the distance from the door. If so, the value of
distance will be updated and we will compare the calculated
distance with a predefined threshold. If the distance is within
the threshold, then we can go to the next step and the system
attempts to make a decision to change the state.

The state change problem is similar to the handover
problem in cellular network [10], so we design two handover
algorithms for this part.

The easiest and most direct way to make a handover
decision is using the availability of the GPS signal. The
steps of Algorithm 1 are depicted in Figure 3. The state will
change if the GPS status changes. If GPS signal is available,
we decide the state as outdoor; If GPS signal is denied, we
decide it as indoor.

Algorithm 1 is simple and straight, but it has great
disadvantage since it will introduce numbers of false alarms,
especially when the device is around the door and the GPS
signal keeps changing frequently. We add some improvement
in Algorithm 2 (shown in Figure 4) and the state will not
change until GPS status stays the same for a certain period
of time. The decision not only depends on the current status
of GPS signal, but the maintenance of the GPS signal.

Fig. 3. Decision algorithm 1: using only GPS access to make the decision

Fig. 4. Decision algorithm 2: using GPS access and time delay to make the
decision

C. Detecting Multi-floor Transition

Detection of floor transition should be considered in
another way since the barometric pressure readings has a
different property from the satellite data. A pressure-height
model is constructed so that we can calculate the altitude
of a certain location from which the floor transition can
be determined. What’s more, new algorithms are explored
to eliminate the effect of some factors (noise, bias) in the
pressure-height model and analyze the transition progress. The
following two sections will discuss more about these two
aspects.

1) Pressure-height Model: Barometric pressure is ex-
ploited for detecting multi-floor transition since it is related
to the altitude of the current location. According to the
International Standard Atmosphere Model formulated by In-
ternational Civil Aviation Organization, their relation can be



represented and derived by equation 1.

p = p0 × (1− L× h
T0

)
g×M
R×L

≈ p0 × (1− g × h
cp × T0

)
cp×M

R

≈ p0 × exp(
−g ×M × h
R× T0

)

(1)

All the parameters used in the pressure-height equation
is shown in Table I. From the equation above, altitude can

TABLE I
PARAMETERS USED IN PRESSURE-HEIGHT EQUATION

Parameter Description Value
p0 Standard atmospheric pressure 101325 Pa
L Temperature lapse rate 0.0065 K/m
cp Constant pressure specific heat 1007 J/kg*K
T0 Sea level standard temperature 288.15 K
g Gravitational acceleration 9.80665 m/s2

M Molar mass of dry air 0.0289644 kg/mol
R Universal gas constant 8.31447 J/(mol*K)

be calculated from barometric pressure, which is derived as
follow:

h = −R× T0
g ×M

× ln( p
p0

) (2)

Basically, we can calculate altitude from air pressure
according to equation 2, however, data gathered from the smart
phone suffers great noise, bias, and time difference, which will
affect the precision of the transition detection. The following
three sections will have a deeper look at these three factors.

Noise causes the change of raw pressure readings in a
fixed floor. This change is slow with a small range, and after
fitting it into different distributions (shown in Figure 5 ), we
find it an ideal Gaussian-distributed noise with zero mean
(white noise). To eliminate the effect of noise, we use a simple
low-pass filter, which will be discussed later.

Fig. 5. Distribution fit for noise

Fig. 6. Distribution fit for bias

Bias is the difference of raw pressure reading caused
by different devices. In our experiment, we use two different
barometers to measure the air pressure and fit their difference
with different distributions (shown in Figure 6). We find that
bias is also Gaussian-distributed with a certain mean value.
Note that although we can model bias between different
devices, in reality we don’t need to put it into consideration
in localization. The reason is that during the navigation, the
device is fixed and we don’t need to know the difference.

Time difference is the most uncertain part in the
pressure-height model. From equation 1we can see that
some physical factors will affect the barometric pressure,
such as temperature and humidity (which will change during
the time), then at different time, we will get pressure data
with extremely great difference. For example, the barometric
pressure in winter is much higher than that in summer in a
fixed place at the same time during a day.

Fortunately, when we are using the model to deal with
localization, we can assume that the time duration is so small
that we don’t need to consider time difference anymore.

When noise, bias and time difference are considered, the
equation should be written as follow:

h′ = −D ×R× T0
g ×M

× ln(p+N +B

p0
) (3)

Where N represents noise, B represents bias and D
represents time difference.

2) Smoothing: Since raw pressure reading contains some
noises, which may distort the result and affect threshold value
choice, and thus influence the detection of floor transfer. To
eliminate those noise, we adopt double exponential smoothing
to produce smoothed data. The basic idea of double exponen-
tial smoothing is to take account of the trend estimation, this
technique works as follows: xt is the raw data set, stis the
smoothed value set, btis the best estimation value of the trend.



For initial value,

s1 = x1

b1 = x1 − x0
(4)

And for t > 1,

st = α× xt + (1− α)× (st−1 + bt−1)

bt = β × (st − st−1) + (1− β)× bt−1
(5)

α is the data smoothing factor, 0 < α < 1 , and is the
trend smoothing factor, 0 < β < 1. The smoothing factor
means how much recent changes weights to result. In this
case, factor values close to zero have more smoothing effect
and are more responsive to recent changes. Considering the
distortion and calibration, we use 0.3 for α and 0.2 for β.
It effectively removes the noisy peak and showed smoothed
readings.

3) Algorithms for Detection: The algorithm used for
transition detection is quite similar with the ones used for
intruder problem, the difference lies in that we use the pressure
readings variance as the parameter that used as the threshold
to determine floor transition.

To identify whether it is a floor transition mode or not,
we just need to figure out prominently pressure variance,
which can be realized by applying 1st derivation to pressure
reading and setting thresholds. After smoothing the derivative
result, there is still some noise and transient oscillation, which
might cause bias and effect detection accuracy. The main
basis of floor detection is comparing derivative result with
threshold, therefore identifying the transition. According to
that, we should compare period result behavior with threshold
value and avoid transient oscillation influence. And setting a
D buffer, which to store 1st derivative value in a 15 seconds
period, could effectively solve our problem. The D buffer is
triggered every 5 seconds. And after analysis the result data,
we find both in stair mode and elevation mode, the threshold
could be 1.3. If there are 10 data value in the buffer are larger
than threshold, then transient value influence minimized and
floor transition identified. The algorithm is shown in Figure 7
in detail.

IV. TEST-BED, SCENARIOS & DATA COLLECTION

A. Test-bed

Test-bed is inside and outside the Atwater Kent (AK)
building in Worcester Polytechnic Institute (WPI). The ex-
periments are mainly composed two parts: the first is mainly
focusing on the spots around three doors (shown and labeled in
Figure 8) on the first floor; the second part is mainly measuring
barometric pressure on different floors under different mode
and detecting floor changing using pressure-height formula.

We conducted several experiments using different mobile
phones. Android phone (version 4.3) is used in this experiment
to collect GPS data, iPhone 6 and iPhone 6 plus is used to
collect barometric pressure data(the M8 motion coprocessor
offers elevation data from new barometer), and Matlab is used
to do data analysis.

Fig. 7. Floor detection algorithm

B. Scenarios & Data Collection

We designed five different scenarios for these three doors.
The first three scenarios are designed for movement nearby the
doors without crossing them and movement across the doors
(shown in Figure 8):

• Scenario 1: Door 1 (In-Out, In, Out)
• Scenario 2: Door 2 (In-Out, In, Out)
• Scenario 3: Door 3 (In-Out, In, Out)

The other two scenarios are designed for some special spots
(dirty spots) since in some part around the building (near Door
3 in this experiment), sometimes we have GPS access indoor
and sometimes we cannot get any signal outdoor.

• Scenario 4: Outdoor/ GPS signal denied
• Scenario 5: Indoor/ GPS signal available

Fig. 8. Scenarios at Three Doors



With the five scenarios above, we collect data from
the Android phone in every 10ms and create a database
around the three doors. We can have two sets of data, which
are LOS satellite number and estimated location at one
specific position. Given the database, we can evaluate the
error performance at different positions and use algorithms
described in the previous section to make intruder detection.

We also carried out four different scenarios for multi-
floor detection. In the first scenario, we record barometric
pressure while the user was walking and collecting data in
the same floor with the mobile phone. In the second scenario,
the pressure data was collected while the user walked upstairs
and downstairs. In the third scenario, we moved between
different floors by elevator and measured pressure data. In
the fourth scenario, the same phone was laid in four different
places in third Floor and collecting pressure. The fourth
scenario is designed to detecting time errors as a component
of our pressure-height model.

• Scenario 1: collecting pressure data in same floor
• Scenario 2: collecting pressure data while changing floors

in walking mode
• Scenario 3: collecting pressure data while changing floors

in elevator mode
• Scenario 4: collecting pressure data in different spots on

same floor under stationary mode
With the four indoor scenarios mentioned above, the raw
pressure data set is built. By filtering and applying statistical
analysis to the data, we get the noise and bias distribution
model of the pressure reading and the characteristic of the
trend. Given these analysis, together with the existing phys-
ical pressure-height formula, the pressure-height model of
this paper could be built, including noise and device bias
components, which helps floor detecting and supports indoor
mapping selection research.

V. RESULTS & ANALYSIS

A. Histogram, Error Range & CDF of Estimation Error

The histogram for different LOS GPS satellite number is
shown in Figure 9. We can see that three doors show different
GPS signal characters in the histogram. The difference comes

Fig. 9. Histogram of the GPS signal in the database

Fig. 10. Error range of the estimation by using different number of satellites

from the different geometry of these doors. There are various
factor which affects the geometry: the number of doors, the
opening shape and the surroundings (especially windows).

From estimated location in a certain location, we can find
the estimation error in this position and relate the error to the
LOS satellite number in the position we can have the error
range shown in Figure 10. From the plot we can see that when
we only get 4 or 5 LOS satellites in one position, the estimated
location becomes inaccuracy while we have more than 6 LOS
satellites, the error range falls and accuracy increases.

Plot cumulative distribution function (CDF) of the esti-
mation error vs LOS satellites number in Figure 11. We make
satellite number into two groups, one with more than 4 LOS
satellites while the other only has 3 or 4 LOS satellites. We
can see in the plot that with greater LOS satellite number, we
have better estimation error performance.

Fig. 11. CDF plot of the estimation error by using different number of
satellites



Fig. 12. State decision when going around Door 1

Fig. 13. State decision when going around Door 2

Fig. 14. State decision when going around Door 3

B. Performance Comparison of Algorithms

Figure 12-14 show the intruder detecting progress. The
first plot in every figure shows the original data (LOS satellite

number) at every position while walking in the scenario. The
second and third plots are the detection results of Algorithm
1 and 2 respectively. We can see clearly that for Algorithm 1,
there are always great number of false alarms since the GPS
status changes frequently while we are walking through a door.
Algorithm 2 shows significant improvement in eliminating
the false alarms. However, it introduces some delay, which
degrades the continuity of the system.

Dirty spots in the scenario of Door 3 greatly affect the
detection accuracy. We can see in Fig. 11 that even if we are
indoor, the LOS satellite number remains to a certain scale
that which brings lots of false alarms. To eliminate the effect,
we should make a large wait time to make sure that the current
state is stable. As long as the state is decided as stable, we
can make a accurate detection.

Fig. 15. Floor decision for elevator

Fig. 16. Floor decision for stair

Figure 15 and 16 show the multi-floor detection progress
for elevator and stairs. The first plot in every figure shows the
original data (air pressure) at every position while walking in
the scenario. The second and third plots are first derivative
and its smoothing respectively. We can see clearly that after
smoothing, it is more clear for us to see the transition between



two floors. The fourth plot shows the detection results by using
the algorithms described above.

VI. CONCLUSION

In this paper, we present an approach to make intruder
detection by analyzing GPS data and make multi-floor detec-
tion by using barometer in smart devices. We design scenarios
on different floors in Atwater Kent laboratory and conduct
series of experiments to collect data. By relating the estimation
error with the LOA satellite number, it shows that estimation
becomes more accurate as the LOS satellite number becomes
greater. Based on the pressure-height physical law, we take
the first derivative of the barometer and use pressure variance
to detect floor transition. The handover algorithms are used to
automatically detect intruder and multi-floor transition, and
the experiment show that the algorithm performs well in
indoor building and for any type of transport modes(stairs and
elevators). To precisely identify which floor, we also consider
noise, device bias and time difference in our pressure-height
model.

Future work includes: To expand our system to other
kind of building, such as hospital, shopping mall, airport,
and develop a more general solution. Fully combining the
intruder detection, floor transition detection and floor identifi-
cation technique, and try to provide a continuous indoor map
selection system. Refine our pressure-height model, and bring
up a precise time difference model. Integrate our technique
into 2D indoor localization system to provide 3D localization.
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